Operasihitung angka penting dibagi menjadi tiga, yaitu pembulatan, penjumlahan dan pengurangan, serta pembagian dan perkalian. Agar lebih memahaminya, simak penjelasan berikut. 1. Pembulatan Aturan operasi penjumlahan dan pengurangan berlaku juga di operasi perkalian dan pembagian. Hasil operasi harus menyisakan satu angka taksiran.
Operator Bilangan Hasil penjumlahan dan pengurangan hanya mempunyai satu bilangan yang diragukan angka perkiraan. Jika seluruh bilangan tidak digaris bawahi, angka terakhir adalah angka yang diragukan. a. 25300 g angka 3 diragukan 4140 g angka 0 diragukan _______ + 29440 g > mempunyai dua angka diragukan Karena hasil akhir harus mempunyai satu bilangan yang diragukan, bilangan tersebut dibulatkan menjadi b. 152,227 cm angka 7 diragukan 22,5 cm angka 5 diragukan ___________ + 174,727 cm > hasil akhir dibulatkan menjadi 174,7 cm c. 523,467 cm 15,300 cm ___________ - 508,167 cm > hasil akhir dibulatkan menjadi 508,2 cm d. 430 g 255 g _______ - 175 g > hasil akhir dibulatkan menjadi 180 g satu angka diragukan MATERI TERKAIT 👇👇👇 Hakikat Ilmu Fisika adalah Pengukuran, Besaran & Satuan, dan Dimensi Aspek-aspek yang Perlu Diperhatikan dalam Pengukuran Angka Penting, Bilangan Penting & Bilangan Pasti, dan Pembulatan Angka Pengukuran Besaran Panjang Pengukuran Besaran Massa Pengukuran Besaran Waktu 2. Perkalian dan Pembagian dengan Bilangan Penting Jumlah angka penting dari hasil penjumlahan, pengurangan, perkalian, pembagian, atau gabungan di antaranya adalah sebanyak salah satu bilangan penting yang memiliki angka penting paling sedikit. Selain itu, hasil perhitungan hanya boleh mengandung satu angka yang diragukan angka perkiraan. a. Perkalian angka penting 1 2,35 cm x 2,4 cm = 5,64 cm2 = 5,6 cm2 dua angka penting 2 0,534 cm x 5,2 cm = 2,7768 cm2 = 2,8 cm2 dua angka penting 3 0,323 cm x 2,5 cm = 0,8075 cm2 = 0,81 cm2 dua angka penting 4 12,5 cm x 4,5 cm x 1,23 cm = 69, 1875 cm3 = 69 cm3 dua angka penting 5 16,40 cm x 4,5 cm x 3,26 cm = 240, 588 cm3 = 240 cm3 dua angka penting 6 Perkalian angka penting dengan bilangan pasti dicontohkan sebagai berikut. Tebal batu adalah 10,33 cm. Jika 17 batu disusun ke atas, tinggi susunannya adalah 10,33 cm x 17 = 175,61 cm menjadi 175,6 cm empat angka penting b. Pembagian angka penting 1 g 2,4 cm3 = g/ cm3 = = 2,2 x 103 g/ cm3 dua angka penting 2 dyne 234 cm2 = 57,905983 dyne/ cm3 = 57,9 dyne/ cm3 tiga angka penting c. Menarik akar angka penting dicontohkan sebagai berikut 1 √625 cm = 25,0 cm tiga angka penting 2 3√78 cm = 4,2726 cm = 4,3 cm dua angka penting d. Bilangan π phi besarnya 3,14159265 Untuk perhitungan dalam fisika, banyaknya angka di belakang koma dari bilangan π bergantung pada besarnya ketelitian alat ukur yang digunakan. 1 Keliling lingkaran dengan jari-jari r = 12,35 cm adalah S = 2 π r = 2 x 3,14 x 12,35 S = 77,58 cm empat angka penting 2 Luas lingkaran dengan jari-jari 12,35 cm adalah A = π r2 = 3,141 x 12,352 = 479,07317 cm2 A = 479,1 cm2 empat angka penting Sumber Purwanto, B & Azam, M. 2014. Fisika 1 untuk kelas X SMA dan MA Kelompok Peminatan Matematika dan Ilmu Alam “Kurikulum 2013”. Solo PT Wangsa Jatra Lestari Penjumlahan angka penting, Pengurangan angka penting, Perkalian angka penting, Pembagian Angka Penting, operator angka penting, menarik akar angka penting, aturan penulisan angka penting
Carapenulisan rumus excelnya sama seperti saat kita menuliskan soal penjumlahan pada umumnya. Misalkan kita ingin menjumlah angka 130,170,110,90,180 dan 190 maka rumus excelnya kita tulis : = 130 + 170 + 110 + 90 + 180 + 190. Jika ingin menjumlahkan angka-angka di dalam sebuah cell atau range excel, misalnya ingin menjumlahkan angka pada cell Urutan operasi adalah serangkaian aturan untuk menyelesaikan operasi hitung. Urutan operasi memastikan semua orang mendapatkan hasil yang sama. Banyak orang mengingat urutan operasi sebagai PEMDAS "P"arentheses/tanda kurung, "E"xponent/eksponen, "M"ultiplication/perkalian, "D"ivision/pembagian, "A"ddition/penjumlahan, dan "S"ubtraction/pengurangan.Urutan operasi hitung adalah kumpulan aturan untuk mengerjakan operasi hitung. Aturan tersebut memastikan agar semua orang mendapatkan jawaban yang color 7854ab, start text, P, end text, end color 7854abarentheses atau tanda kurung Kita mengerjakan apa yang ada di dalam kurung terlebih dahulu, sebelum yang lainnya. Contohnya, 2, times, start color 7854ab, left parenthesis, 3, plus, 1, right parenthesis, end color 7854ab, equals, 2, times, 4, equals, color 11accd, start text, E, end text, end color 11accdxponent atau pangkat Kita mengerjakan pangkatnya terlebih dahulu sebelum mengalikan, membagi, menjumlahkan, atau mengurangi. Contohnya, 2, times, start color 11accd, 3, squared, end color 11accd, equals, 2, times, 9, equals, color 1fab54, start text, M, end text, end color 1fab54ultiplication atau perkalian dan start color 1fab54, start text, D, end text, end color 1fab54ivision atau pembagian Kita mengalikan dan membagi sebelum menjumlahkan atau mengurangi. Contohnya, 1, plus, start color 1fab54, 4, divided by, 2, end color 1fab54, equals, 1, plus, 2, equals, color e07d10, start text, A, end text, end color e07d10ddition atau penjumlahan dan start color e07d10, start text, S, end text, end color e07d10ubtraction atau pengurangan Terakhir, kita jumlahkan dan orang mengingat urutan pengerjaan operasi hitung sebagai start color 7854ab, start text, P, end text, end color 7854ab, start color 11accd, start text, E, end text, end color 11accd, start color 1fab54, start text, M, D, end text, end color 1fab54, start color e07d10, start text, A, S, end text, end color e07d10 diucapkan sesuai ejaannya, di mana "P" adalah parentheses tanda kurung, "E" adalah exponent pangkat, dan penting Ketika kita mempunyai lebih dari satu operasi hitung yang setipe, kita kerjakan dari kiri ke kanan. Aturan ini penting ketika pengurangan atau pembagian ada di sisi kiri operasi hitung, seperti 4, minus, 2, plus, 3 atau 4, divided by, 2, times, 3 lihat contoh 3 di bawah ini untuk mengerti mengapa aturan ini penting.Contoh 1Kerjakan 6, times, 4, plus, 2, times, tidak ada tanda dalam kurung atau pangkat, kita langsung mengerjakan perkalian dan space, 6, times, 4, plus, 2, times, 3equals, start color 28ae7b, 6, times, 4, end color 28ae7b, plus, 2, times, 3Kalikan start color 1fab54, 6, end color 1fab54 dan start color 1fab54, 4, end color 24, plus, start color 28ae7b, 2, times, 3, end color 28ae7bKalikan start color 1fab54, 2, end color 1fab54 dan start color 1fab54, 3, end color start color e07d10, 24, plus, 6, end color e07d10Jumlahkan start color e07d10, 24, end color e07d10 dan start color e07d10, 6, end color 30... dan kita selesai!Perhatikan Kita mengerjakan semua perkalian sebelum menjumlahkan. Jika kita mengerjakan 24, plus, 2 sebelum mengalikan 2, times, 3, kita akan mendapatkan jawaban yang 2Kerjakan 6, squared, minus, 2, left parenthesis, 5, plus, 1, plus, 3, right space, 6, squared, minus, 2, left parenthesis, 5, plus, 1, plus, 3, right parenthesisequals, 6, squared, minus, 2, left parenthesis, start color 7854ab, 5, plus, 1, plus, 3, end color 7854ab, right parenthesisJumlahkan start color 7854ab, 5, plus, 1, plus, 3, end color 7854ab di dalam tanda kurung terlebih start color 11accd, 6, end color 11accd, start superscript, start color 11accd, 2, end color 11accd, end superscript, minus, 2, left parenthesis, 9, right parenthesisHitung start color 11accd, 6, squared, end color 11accd, yaitu 6, dot, 6, equals, 36, minus, start color 1fab54, 2, left parenthesis, 9, right parenthesis, end color 1fab54Kalikan start color 1fab54, 2, end color 1fab54 dan start color 1fab54, 9, end color start color e07d10, 36, minus, 18, end color e07d10Kurangi 18 dari 18... dan kita selesai!Contoh 3Kerjakan 7, minus, 2, plus, yang benar adalah dengan mengerjakan dari kiri ke Walaupun "A" untuk Addition penjumlahan terletak sebelum "S" untuk Subtraction pengurangan dalam PEMDAS, tidak berarti kita perlu menjumlahkan sebelum mengurangi. Penjumlahan dan pengurangan ada pada "tingkatan" yang sama pada urutan pengerjaan operasi hitung. Hal ini juga berlaku untuk perkalian dan mempelajari lebih banyak mengenai urutan pengerjaan operasi hitung? Lihatlah video
Biasanyapenulisan pangkat tersebut letaknya sedikit ke atas dan ukurannya lebih kecil dibandingkan angkanya. Contohnya 2², 4², 9², 11² dan sebagainya. Operasi hitung pangkat dua biasanya terdiri dari pengurangan, penjumlahan, pembagian dan perkalian.
Blog Koma - Halow teman-teman, bagaimana kabarnya hari ini? Mudah-mudahan baik-baik saja. Pada artikel kali ini kita akan mempelajari materi yang berkaitan dengan kaidah pencacahan yaitu menentukan banyaknya cara dalam menyusun suatu percobaan. Kaidah pencacahan terdiri dari aturan perkalian dan aturan penjumlahan, permutasi dan kombinasi. Untuk khusus pada kesempatan ini, kita akan membahas lebih mendetail tentang Aturan Perkalian, Aturan Penjumlahan, dan Faktorial. Materi faktorial digunakan untuk masalah permutasi dan kombinasi. Aturan Perkalian pada kaidah pencacahan Jika terdapat $ n \, $ unsur yang tersedia, $k_1 = \, $ banyak cara untuk menyusun unsur pertama $ k_2 = \, $ banyak cara untuk menyusun unsur kedua setelah unsur pertama tersusun $ k_3 = \, $ banyak cara untuk menyusun unsur ketiga setelah unsur kedua tersusun dan seterusnya sampai $k_n = \, $ banyak cara untuk menyusun unsur ke-$n$ setelah objek $ n - 1 $ unsur sebelumnya tersusun Maka banyak cara untuk menyusun $ n \, $ unsur yang tersedia adalah $ k_1 \times k_2 \times k_3 \times ... \times k_n $ Catatan Aturan perkalian biasanya digunakan untuk beberapa kejadian yang semuanya "SEKALIGUS TERJADI" dan biasanya menggunakan kata penghubung "DAN" Contoh soal penggunaan aturan perkalian 1. Budi mempunyai 3 buah baju berwarna putih, cokelat, dan batik. Ia juga memiliki 2 buah celana warna hitam dan cokelat yang berbeda. Ada berapa pasang baju dan celana dapat dipakai dengan pasangan yang berbeda? Penyelesaian *. Cara I Mendaftarkan semua pasangan dengan diagram Berikut diagram kemungkinan pasangan baju dan celana. Dari diagram di atas, banyaknya pasangan baju dan celana yang dapat digunakan oleh Budi sebanyak 6 pasang yaitu baju putih, celana hitam, baju putih, celana cokelat, baju batik, celana hitam, baju batik, celana cokelat, baju cokelat, celana hitam, dan baju cokelat, celana cokelat. *. Cara II Menggunakan aturan perkalian. Pada soal ini kita akan menentukan banyaknya pasangan baju dan celana, artinya setiap pasangan harus memuat baju dan celana sehingga SEKALIGUS kedua-duanya baju dan celana harus ada sehingga kita bisa menggunakan aturan perkalian secara langsung. *. Unsur pertama adalah baju, ada 3 pilihan baju, sehingga $ k_1 = 3 $. *. Unsur kedua adalah celana, ada 2 pilihan celana, sehingga $ k_2 = 2 $. *. Total pasangan baju dan celanan Total pasangan $ = k_1 \times k_2 = 3 \times 2 = 6 $. Jadi, banyaknya pasangan baju dan celana ada 6 pasang berbeda. 2. Iwan memiliki 5 jenis baju yang berbeda, 2 jenis celana yang berbeda, 2 topi yang berbeda, 3 dasi yang berbeda, dan 4 pasang sepatu serta kaosnya. Tentukan ada berapa banyak cara Iwan menggunakan seragam sekolah jika semua jenis harus dipakai? Penyelesaian Total seragam yang mungkin terbentuk adalah $ 5 \times 2 \times 2 \times 3 \times 4 = 240 \, $ pilihan. Jadi, ada 240 pilihan seragam yang bisa dipakai oleh Iwan. 3. Untuk menuju kota C dari kota A harus melewati kota B. Dari kota A ke kota B melewati 4 jalur dan dari kota B ke kota C ada 3 jalur. Dengan berapa jalur Budi dapat pergi dari kota A ke kota C? Penyelesaian *. Kita gunakan aturan perkalian karena jalur AB dan BC harus ditempuh semua, artinya ketiga jalur SEKALIGUS dilewati untuk perjalanan dari kota A ke kota C. Total jalur $ = 4 \times 3 = 12 \, $ jalur. 4. Seorang ingin membuatkan plat nomor kendaraan yang terdiri dari 4 angka yang dipilih dari angka-angka 1, 2, 3, 4, 5 dan dalam plat nomor itu tidak boleh ada angka yang sama. Berapa banyak plat nomor dapat dibuat? Penyelesaian *. Plat nomor tidak boleh ada angka yang berulang, artinya angka yang sudah dipakai tidak boleh dipakai lagi. Misalkan palat nomor 2113 tidak boleh karena angka 1 berulang. Contoh yang boleh adalah plat nomor 2134, 1234, 1235, dan lainnya. *. Misalkan kita buat 4 buah kotak kosong yaitu kotak a, b, c dan d sebab nomor kendaraan itu terdiri dari 4 angka. Berikut cara pengisian masing-masing kotak Pilihan angkanya adalah 1, 2, 3, 4, 5, artinya totalnya ada 5 pilihan angka. i. Kotak a, dapat diisi angka 1, 2, 3, 4, atau 5 sehingga ada 5 cara. ii. Kotak b, dapat diisi dengan 4 pilihan bilangan karena satu bilangan sudah dipakai untuk kotak a. iii. Kotak c, dapat diisi dengan 3 pilihan bilangan karena dua bilangan sudah dipakai untuk kotak a dan b. iv. Kotak d, dapat diisi dengan 2 pilihan bilangan karena tiga bilangan sudah dipakai untuk kotak a, b, dan c. Sehingga gambar lengkap kotaknya adalah Banyaknya plat nomor $ = 5 \times 4 \times 3 \times 2 = 120 \, $ plat nomor. Jadi, banyaknya plat nomor yang bisa dibuat adalah 120 plat nomor. 5. Seorang ingin membuatkan plat nomor kendaraan yang terdiri dari 4 angka yang dipilih dari angka-angka 1, 2, 3, 4, 5 dan dalam plat nomor itu boleh ada angka yang sama. Berapa banyak plat nomor dapat dibuat? Penyelesaian Soal ini sebenarnya mirip dengan soal nomor 4, hanya saja syaratnya yang dibedakan sedikt. Plat nomor boleh ada angka yang sama, artinya angka yang sudah dipakai boleh dipakai lagi. *. Kita buat 4 kota karena plat nomor terdiri dari 4 angka saja. Pilihan angkarnya adalah 1, 2, 3, 4, 5, artinya totalnya ada 5 pilihan angka. Cara pengisian setiap kotak i. Kotak I, dapat diisi angka 1, 2, 3, 4, atau 5 sehingga ada 5 cara. ii. Kotak II, dapat diisi dengan 5 pilihan angka juga karena angka yang sudah dipakai pada kotak I bisa dipakai lagi pada kotak II. Begitu juga dengan kotak III dan kotak IV ada 5 pilihan angka masing-masing. Banyaknya plat nomor $ = 5 \times 5 \times 5 \times 5 = 625 \, $ plat nomor. Jadi, banyaknya plat nomor yang bisa dibuat adalah 625 plat nomor. Aturan Penjumlahan pada kaidah pencacahan Jika terdapat $ n \, $ peristiwa yang saling lepas, $k_1 = \, $ banyak cara pada peristiwa pertama $ k_2 = \, $ banyak cara pada peristiwa kedua $ k_3 = \, $ banyak cara pada peristiwa ketiga dan seterusnya sampai $k_n = \, $ banyak cara pada peristiwa ke-$n$ Maka banyak cara untuk $ n \, $ buah peristiwa secara keseluruhan adalah $ k_1 + k_2 + k_3 + ... + k_n $ Catatan Aturan penjumlahan biasanya digunakan untuk beberapa kejadian yang "TIDAK SEKALIGUS TERJADI" artinya yang terjadi hanya salah satu saja atau bisa dibilang "PILIHAN" dan biasanya menggunakan kata penghubung "ATAU" Contoh soal aturan penjumlahan 6. Di rumahnya Wati terdapat 3 jenis sepeda berbeda, 2 jenis sepeda motor berbeda, dan 2 mobil yang berbeda. Jika Wati ingin berpergian, ada berapa cara Wati menggunakan kendaraan yang ada di rumahnya? Penyelesaian Pada kasus ini, ada tiga pilihan kendaraan yaitu sepeda, sepeda motor, dan mobil. Wati tidak mungkin menggunakan SEKALIGUS ketiga jenis kendaraan tersebut yang artinya Wati harus memilih salah satu jenis kendaraan saja. Sehingga kita bisa menggunakan aturan penjumlahan pada kasus ini. *. Menentukan banyak cara menggunakan kendaraan Total cara $ = 3 + 2 + 2 = 7 \, $ cara. Jadi, ada 7 cara pilihan kendaraan yang bisa digunakan oleh Wati. 7. Dari Kota A menuju kota D dapat melalui beberapa jalur pada gambar di bawah ini. Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Penyelesaian *. Untuk perjalanan dari kota A ke kota D bisa melalui kota B atau kota C. Beberapa jalur yang bisa ditempuh Jalur Pertama jalurnya A - B - D A - B ada 4 jalan dan B - D ada 3 jalan, toal jalur pertama $ = 4 \times 3 = 12 $ Jalur Kedua jalurnya A - C - D A - C ada 3 jalan dan C - D ada 3 jalan, toal jalur kedua $ = 3 \times 3 = 9 $ *. Keseluruhan jalur yang ditempuh adalah melalui jalur pertama atau jalur kedua sehingga bisa menggunakan aturan penjumlahan. Total jalur = jalur pertama $ + \, $ jalur kedua = $ 12 + 9 = 21 \, $. Jadi, banyak kemungkinan jalur yang ditempuh dari A ke D ada 21 jalur. Definisi dan Notasi Faktorial Misalkan ada $ n \, $ bilangan asli, Notasi faktorial adalah $ n! \, $ dibaca "$n \, $ faktorial". Cara penghitungannya $ n! = n \times n-1 \times n-2 \times n-3 \times ... \times 3 \times 2 \times 1 $ dengan $ 0! = 1 $. Contoh soal faktorial 8. Tentukan nilai faktorial berikut ini, a. 5! b. 3! c. 6! d. $ \frac{7!}{5!} $ e. $ 3! \times 2 ! $ f. $ \frac{8!}{3! \times 6!} $ Penyelesaian a. $ 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 $ b. $ 3! = 3 \times 2 \times 1 = 6 $ c. $ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 $ d. $ \frac{7!}{5!} = \frac{7 \times 6 \times 5!}{5!} = 7 \times 6 = 42 $ e. $ 3! \times 2 ! = 3 \times 2 \times 1 \times 2 \times 1 = 6 \times 2 = 12 $ f. $ \frac{8!}{3! \times 6!} = \frac{8 \times 7 \times 6!}{3 \times 2 \times 1 \times 6!} = \frac{8 \times 7 }{3 \times 2 \times 1 } = \frac{28}{3} $ 9. Nyatakan bentuk berikut dalam bentuk faktorial a. $ 4 \times 5 \times 6 $ b. $ \frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} $ Penyelesaian a. $ \begin{align} 4 \times 5 \times 6 = \frac{1 \times 2 \times 3 \times 4 \times 5 \times 6}{1 \times 2 \times 3 } = \frac{6!}{3!} \end{align} $ b. $ \begin{align} \frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{1 \times 2 \times 3 \times 4 \times 4 \times 3 \times 2 \times 1 } = \frac{8!}{4! \times 4!} \end{align} $ 10. Hitunglah nilai faktorial dari $ \frac{5}{7!} - \frac{1}{6!} + \frac{24}{8!} $ Penyelesaian *. Karena penyebutnya ada tiga jenis, maka kemunngkinan jawabannya ada 3 bentuk yang nilainya tetap sama. $ \begin{align} \frac{5}{7!} - \frac{1}{6!} + \frac{10}{8!} & = \frac{8 \times 5}{8 \times 7!} - \frac{8 \times 7 \times 1 }{8 \times 7 \times 6!} + \frac{24}{8!} \\ & = \frac{40}{8!} - \frac{56 }{8!} + \frac{24}{8!} \\ & = \frac{40 - 56 + 24}{8!} \\ & = \frac{8}{8!} \\ & = \frac{8}{8 \times 7!} \\ & = \frac{1}{7!} \\ & = \frac{1}{7 \times 6!} \\ \end{align} $ Jadi hasilnya adalah $ \frac{8}{8!} \, $ atau $ \frac{1}{7!} \, $ atau $ \frac{1}{7 \times 6!} $. 11. Tentukan nilai $ n \, $ , jika $ \frac{n! - n-2!}{n-1!} = 1 $ Penyelesaian $ \begin{align} \frac{n! - n-2!}{n-1!} & = 1 \\ \frac{n \times n-1 \times n-2! - n-2!}{n-1 \times n-2!} & = 1 \\ \frac{n \times n-1 - 1}{n-1 } & = 1 \\ \frac{n^2 - n - 1}{n-1 } & = 1 \\ n^2 - n - 1 & = n - 1 \\ n^2 - 2n & = 0 \\ nn-2 & = 0 \\ n = 0 \vee n = 2 \end{align} $ Yang memenuhi adalah untuk $ n = 2 $ . Jadi, diperoleh nilai $ n = 2 $.
Penguranganadalah salah satu dari 4 operasi aritmetika dasar . Perkurangan merupakan kebalikan dari operasi penjumlahan yaitu mengambil,menghabiskan,mengilangkan,diberikan bilangan yang awal dengan bilangan yang lainnya .. - Penulisan Pengurangan Berikut adalah penulisan pengurangan, pengurangan ditulis dengan menggunakan tanda Strip " - "
Rumus Trigonometri – Pengantar Dalam trigonometri, Sinus. Cosinus. Tangent, Cosecan, Secan, dan Cotangent bisa digunakan bersama-sama baik dengan penjumlahan atau pengurangan maupun perkalian. Rumus-rumus penjumlahan, pengurangan, atau perkalian dalam trigonometri dapat diturunkan dari rumus jumlah dua sudut atau selisih dua sudut. Rumus Trigonometri untuk Jumlah Dua Sudut dan Selisih Sudut Rumus Trigonometri untuk Sudut Rangkap Pada rumus sudut rangkap, merupakan modifikasi dari penjumlahan dua sudut dengan , sehingga rumusnya menjadi sebagi berikut . Subtitusikan pada persamaan diatas, sehingga menjadi . Karena , maka didapat Sifat I . . Subtitusikan pada persamaan diatas, sehingga menjadi . Karena dan , maka didapat Sifat II . Karena hasil pada cos sudut rangkap II merupakan selisih kuadrat, maka bentuk ini bisa disubtitusi dengan identitas trigonometri . Subtitusikan pada persamaan rumus sudut rangkap dari cos II menjadi . Buka kurung pada persamaan menjadi . Jumlah kan kuadrat dari kedua cos akan didapat Sifat III . . Subtitusikan pada persamaan rumus sudut rangkap dari cos II menjadi . Buka kurung pada persamaan menjadi . Jumlah kan kuadrat dari kedua cos didapat Sifat IV . Rumus Trigonometri untuk Perkalian Sinus dan Cosinus Rumus perkalian dari Sinus dan Cosinus diperoleh dari menjumlahkan dan mengurangi rumus dari sudut rangkap. Rumus Pertama Jumlahkan dengan Dari perhitungan hasil diatas diperoleh . Rumus Kedua Kurangkan dengan Dari perhitungan hasil diatas, diperoleh . Rumus Ketiga Jumlahkan dengan Dari perhitungan hasil diatas diperoleh . Rumus Keempat Kurangkan dengan dengan Dari perhitungan hasil diatas diperoleh . Rumus Trigonometri untuk Penjumlahan dan Pengurangan Sinus dan Cosinus Rumus trigonometri untuk penjumlahan dan pengurangan merupakan modifikasi dari bentuk perkalian Sinus dan Cosinus. Pada modifikasi ini, kita cukup mensubtitusi menjadi dan menjadi , sehingga diperoleh . Aturan Sinus Setiap segitiga, selalu memiliki tiga sudut dan setiap sudut selalu menghadap pada satu sisi. Dari masing-masing sudut dan sisi yang berhadapan, terdapat perbandingan yang selalu sebanding, yaitu . Aturan Sinus ini dapat digunakan dalam perhitungan jika paling sedikit diketahui 2 sisi 1 sudut atau 1 sisi 2 sudut. Aturan Cosinus Rumus perbandingan sudut dengan sisi pada segitiga, selain menggunakan Sinu, juga terdapat rumus Cosinus, yaitu . . . Rumus diatas digunakan untuk menentukan panjang sisi jika diketahui 2 sisi dan 1 sudut yang diapit kedua sisi tersebut. Sedangkan untuk menentukan besar sudut jika diketahui 3 sisi segitiga, dapat menggunakan aturan ini juga, dengan mengubah bentuk di atas, misalnya . Contoh Soal Sederhanakah bentuk persamaan berikut ! Jawab Penjabaran dari bentuk adalah , dimana sesuai identitas trigonometri, sehingga . Untuk bentuk , dengan menggunakan rumus sudut rangkap, diperoleh bentuk , , atau . Untuk penyelesaian persamaan ini, kita gunakan bentuk . Sehingga persamaan menjadi . Ketika tanda kurung dihilangkan, menjadi . Bagi pembilang dan penyebut dengan , dan diperoleh bentuk atau . Judul Artikel Rumus Trigonometri kelas 11 Kontributor Fikri Khoirur Rizal Alumni Teknik Elektro UI Materi lainnya Pengertian Integral Determinan dan Invers Matriks Transformasi Geometri
Sepertinyaperkalian dan pembagian akan lebih rumit daripada penjumlahan dan pengurangan, tetapi sebenarnya lebih sederhana. Aturan untuk mengalikan bilangan positif dan negatif dengan tanda yang sama (dua positif atau dua negatif) adalah bahwa produk akan selalu positif. Sebagai contoh: 8 x 4 = 32 (-8) x (-4) = 32; 10 x 9 = 90 (-10) x (-9) = 90

Masih sering bingung denganrumus aturan penjumlahan & perkalian? Yuk, simak penjelasan lengkapnya lewat video yang ada di sini. Setelahnya, kamu juga bisa mengerjakan latihan soal yang telah disediakan untuk mengasah kemampuan pada bab-bab lainnya, kamu akan diajarkan mengenai teori dasar yang kamu gunakan untuk melakukan penghitungan peluang, yaitu aturan penjumlahan & perkalian. Dua materi ini menjadi dua materi dasar yang akan kamu gunakan sebagai pedoman penghitungan peluang suatu kejadian. Secara garis besar, aturan penjumlahan & perkalian meruapakn dua metode yang menjadi dasar penghitungan banyaknya pasangan dari beberapa objek. Aturan penjumlahan & perkalian ini banyak digunakan ketika kamu hendak menyusun nomor telepon dan menentukan banyaknya jalan dari satu kota ke kota lain. Untuk mengetahui lebih jelasnya, kamu bisa langsung move on ke materi pertama! Materi pertama yang akan kamu pelajari adalah materi mengenai aturan penjumlahan. Aturan penjumlahan bisa kamu gunakan untuk mengetahui banyaknya cara yang bisa kamu lakukan untuk sampai dari kota satu ke kota lainnya, dimana ada beragam jalan yang bisa kamu tempuh. Untuk menyelesaikan contoh soal aturan penjumlahan, kamu bisa menerapkan dua cara berdasarkan jenis soalnya. Yang pertama, kamu bisa selesaikan dengan mengurutkan beberapa kemungkinan yang ada. Kedua, kamu bisa menggunakan rumus aturan penjumlahan dengan memperhatikan keterangan yang diketahui di dalam soal. Selanjutnya, kamu akan belajar mengenai aturan perkalian dalam peluang. Aturan perkalian memungkinkan kamu menghitung kemungkinan metode atau cara yang bisa kamu lakukan untuk mencapai atau melakukan sesuatu, misalnya ketika kamu hendak pergi dari Jakarta ke Surabaya. Kamu bisa menemukan beberapa kemungkinan alternatif jalan dengan menggunakan aturan perkalian. Untuk menyelesaikan contoh soal aturan perkalian, pertama, kamu bisa menggambarkan banyaknya kemungkinan metode rumus matematika yang akan kamu gunakan, misalnya kamu akan pergi dari Jakarta ke Bandung dengan melewati Bogor. Kamu bisa menghitung berapa kemungkinan jalan yang ada dari Jakarta ke Bogor dan dari Bogor ke Bandung. Yang kamu harus perhatikan adalah apakah jalan yang sama bisa kamu lewati lagi atau tidak. Untuk mulai belajar aturan penjumlahan & perkalian kamu bisa langsung klik daftar materi dibawah ini. Video Pembelajaran Lengkap dengan Contoh Soal & Pembahasan Quiz – Latihan Soal Interaktif Mudah, Sedang & Sukar Aturan Perkalian Video Pembelajaran Lengkap dengan Contoh Soal & Pembahasan Quiz – Latihan Soal Interaktif Mudah, Sedang & Sukar Ada banyak kata kata cinta yang bisa ditemukan. Beberapa di antaranya bisa kamu baca dalam artikel ini dan kamu bisa menemukan inspirasi di dalamnya.

Untukmelakukan operasi pembagian data dalam microsoft Excel caranya adalah dengan menggunakan operator slash (/). Contoh: Pada cell A2 masukkan angka 500 dan pada cell B2 masukkan angka 5, kemudian pada cell C2 masukkan rumus = A2/B2 kemudian Enter hasilnya adalah 100. Lampiran Penjumlahan, Pengurangan, Excel Workbook (xlsx) Download Donasi
Blog Koma - Materi Rumus Perkalian, Penjumlahan, dan Pengurangan Trigonometri merupakan kelanjutan dari materi "Rumus Trigonometri untuk Jumlah dan Selisih Dua Sudut". Silahkan juga baca materi "Perbandingan Trigonometri Sudut-sudut Berelasi". Rumus Perkalian, Penjumlahan, dan Pengurangan Trigonometri ini biasanya akan banyak kita gunakan pada materi integral dan limit. Jadi, harus kita ingat rumus-rumus ini karena akan sangat berguna untuk materi lainnya dalam matematika. Rumus Perkalian Trigonometri untuk Sinus dan Cosinus Misalkan diketahui dua sudut yaitu A dan B, berikut rumus perkalian antara sinus dan cosinus pada sudut A dan B $ \begin{align} \sin A \cos B & = \frac{1}{2}[ \sin A+B + \sin A- B ] \\ \cos A \sin B & = \frac{1}{2}[ \sin A+B - \sin A- B ] \\ \cos A \cos B & = \frac{1}{2}[ \cos A+B + \cos A- B ] \\ \sin A \sin B & = - \frac{1}{2}[ \cos A+B - \cos A- B ] \end{align} $ Pembuktian Rumus Perkalian trigonometri untuk sinus dan cosinus *. Kita menggunakan rumus jumlah dan selisih sudut, yaitu $ \begin{align} \sin A + B & = \sin A \cos B + \cos A \sin B \\ \sin A - B & = \sin A \cos B - \cos A \sin B \\ \cos A+B & = \cos A \cos B - \sin A \sin B \\ \cos A-B & = \cos A \cos B + \sin A \sin B \\ \end{align} $ $\clubsuit $ Pembuktian Rumus $ \sin A \cos B = \frac{1}{2}[ \sin A+B + \sin A- B ] $ $ \begin{array}{cc} \sin A + B = \sin A \cos B + \cos A \sin B & \\ \sin A - B = \sin A \cos B - \cos A \sin B & + \\ \hline \sin A + B + \sin A - B = 2 \sin A \cos B & \end{array} $ Sehingg terbukti $ \sin A \cos B = \frac{1}{2}[ \sin A + B + \sin A - B ] $ $\clubsuit $ Pembuktian Rumus $ \cos A \sin B = \frac{1}{2}[ \sin A+B - \sin A- B ] $ $ \begin{array}{cc} \sin A + B = \sin A \cos B + \cos A \sin B & \\ \sin A - B = \sin A \cos B - \cos A \sin B & - \\ \hline \sin A + B - \sin A - B = 2 \cos A \sin B & \end{array} $ Sehingg terbukti $ \cos A \sin B = \frac{1}{2}[ \sin A+B - \sin A- B ] $ $\clubsuit $ Pembuktian Rumus $ \cos A \cos B = \frac{1}{2}[ \cos A+B + \cos A- B ] $ $ \begin{array}{cc} \cos A+B = \cos A \cos B - \sin A \sin B & \\ \cos A-B = \cos A \cos B + \sin A \sin B & + \\ \hline \cos A + B + \cos A - B = 2 \cos A \cos B & \end{array} $ Sehingg terbukti $ \cos A \cos B = \frac{1}{2}[ \cos A+B + \cos A- B ] $ $\clubsuit $ Pembuktian Rumus $ \sin A \sin B = -\frac{1}{2}[ \cos A+B - \cos A- B ] $ $ \begin{array}{cc} \cos A+B = \cos A \cos B - \sin A \sin B & \\ \cos A-B = \cos A \cos B + \sin A \sin B & - \\ \hline \cos A + B - \cos A - B = -2 \sin A \sin B & \end{array} $ Sehingg terbukti $ \sin A \sin B = -\frac{1}{2}[ \cos A+B - \cos A- B ] $ Contoh 1. Tentukan nilai dari trigonometri berikut a. $ \sin 75^\circ \cos 15^\circ $ b. $ \cos 67\frac{1}{2}^\circ \sin 22\frac{1}{2}^\circ $ c. $ \cos 105^\circ \cos 15^\circ $ d. $ \sin 127\frac{1}{2}^\circ \sin 97\frac{1}{2}^\circ $ Penyelesaian a. Gunakan rumus $ \sin A \cos B = \frac{1}{2}[ \sin A+B + \sin A- B ] $ dengan besar sudut $ A = 75^\circ \, $ dan $ B = 15^\circ $ $ \begin{align} \sin A \cos B & = \frac{1}{2}[ \sin A+B + \sin A- B ] \\ \sin 75^\circ \cos 15^\circ & = \frac{1}{2}[ \sin 75^\circ +15^\circ + \sin 75^\circ - 15^\circ ] \\ & = \frac{1}{2}[ \sin 90^\circ + \sin 60^\circ ] \\ & = \frac{1}{2}[ 1 + \frac{1}{2}\sqrt{3} ] \\ & = \frac{1}{4} 2 + \sqrt{3} \end{align} $ Jadi, nilai $ \sin 75^\circ \cos 15^\circ = \frac{1}{4} 2 + \sqrt{3} $ b. Gunakan rumus $ \cos A \sin B = \frac{1}{2}[ \sin A+B - \sin A- B ] $ dengan besar sudut $ A = 67\frac{1}{2}^\circ \, $ dan $ B = 22\frac{1}{2}^\circ $ $ \begin{align} \cos A \sin B & = \frac{1}{2}[ \sin A+B - \sin A- B ] \\ \cos 67\frac{1}{2}^\circ \sin 22\frac{1}{2}^\circ & = \frac{1}{2}[ \sin 67\frac{1}{2}^\circ + 22\frac{1}{2}^\circ - \sin 67\frac{1}{2}^\circ - 22\frac{1}{2}^\circ ] \\ & = \frac{1}{2}[ \sin 90^\circ - \sin 45^\circ ] \\ & = \frac{1}{2}[ 1 - \frac{1}{2} \sqrt{2} ] \\ & = \frac{1}{4} 2 - \sqrt{2} \end{align} $ Jadi, nilai $ \cos 67\frac{1}{2}^\circ \sin 22\frac{1}{2}^\circ = \frac{1}{4} 2 - \sqrt{2} $ c. Gunakan rumus $ \cos A \cos B = \frac{1}{2}[ \cos A+B + \cos A- B ] $ dengan besar sudut $ A = 105^\circ \, $ dan $ B = 15^\circ $ $ \begin{align} \cos A \cos B & = \frac{1}{2}[ \cos A+B + \cos A- B ] \\ \cos 105^\circ \cos 15^\circ & = \frac{1}{2}[ \cos 105^\circ + 15^\circ + \cos 105^\circ - 15^\circ ] \\ & = \frac{1}{2}[ \cos 120^\circ + \cos 90^\circ ] \\ & = \frac{1}{2}[ - \cos 60^\circ + 0 ] \\ & = \frac{1}{2}[ - \frac{1}{2} + 0 ] \\ & = - \frac{1}{4} \end{align} $ Jadi, nilai $ \cos 105^\circ \cos 15^\circ = - \frac{1}{4} $ d. Gunakan rumus $ \sin A \sin B = -\frac{1}{2}[ \cos A+B - \cos A- B ] $ dengan besar sudut $ A = 127\frac{1}{2}^\circ \, $ dan $ B = 97\frac{1}{2}^\circ $ $ \begin{align} \sin A \sin B & = -\frac{1}{2}[ \cos A+B - \cos A- B ] \\ \sin 127\frac{1}{2}^\circ \sin 97\frac{1}{2}^\circ & = -\frac{1}{2}[ \cos 127\frac{1}{2}^\circ + 97\frac{1}{2}^\circ - \cos 127\frac{1}{2}^\circ - 97\frac{1}{2}^\circ ] \\ & = -\frac{1}{2}[ \cos 225^\circ - \cos 30^\circ ] \\ & = -\frac{1}{2}[ \cos 180^\circ + 45^\circ - \cos 30^\circ ] \\ & = -\frac{1}{2}[ -\cos 45^\circ - \cos 30^\circ ] \\ & = -\frac{1}{2}[ -\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{3} ] \\ & = \frac{1}{4} \sqrt{2} + \sqrt{3} \end{align} $ Jadi, nilai $ \sin 127\frac{1}{2}^\circ \sin 97\frac{1}{2}^\circ = \frac{1}{4} \sqrt{2} + \sqrt{3} $ Rumus Trigonometri Penjumlahan dan Pengurangan Misalkan diketahui dua sudut P dan Q, berlaku rumus penjumlahan dan pengurangannya $ \begin{align} \sin P + \sin Q & = 2 \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q \\ \sin P - \sin Q & = 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P-Q \\ \cos P + \cos Q & = 2 \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q \\ \cos P - \cos Q & = -2 \sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q \\ \tan P + \tan Q & = \frac{2\sinP+Q}{\cos P+Q + \cos P-Q } \\ \tan P - \tan Q & = \frac{2\sinP-Q}{\cos P+Q + \cos P-Q } \end{align} $ Pembuktian rumus penjumlahan dan pengurangan trigonometri *. Kita menggunakan rumus perkalian trigonometri sebelumnya. *. Misalkan $ A + B = P \, $ dan $ A - B = Q $ , maka dengan eliminasi kedua persamaan kita peroleh $ A = \frac{1}{2}P+Q \, $ dan $ A = \frac{1}{2}P-Q $ *. Substitusi bentuk permisalan di atas ke persamaan yang digunakan. $\spadesuit $ Pembuktian Rumus $ \sin P + \sin Q = 2 \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q $ $ \begin{align} \sin A \cos B & = \frac{1}{2}[ \sin A+B + \sin A- B ] \\ \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q & = \frac{1}{2}[ \sin P + \sin Q ] \\ 2\sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q & = \sin P + \sin Q \end{align} $ Sehingga tebukti rumus $ \sin P + \sin Q = 2 \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q $ $\spadesuit $ Pembuktian Rumus $ \sin P - \sin Q = 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P-Q $ $ \begin{align} \cos A \sin B & = \frac{1}{2}[ \sin A+B - \sin A- B ] \\ \cos \frac{1}{2}P+Q \sin \frac{1}{2}P - Q & = \frac{1}{2}[ \sin P - \sin Q ] \\ 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P - Q & = \sin P - \sin Q \end{align} $ Sehingga tebukti rumus $ \sin P - \sin Q = 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P-Q $ $\spadesuit $ Pembuktian Rumus $ \cos P + \cos Q = 2 \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q $ $ \begin{align} \cos A \cos B & = \frac{1}{2}[ \cos A+B + \cos A- B ] \\ \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q & = \frac{1}{2}[ \cos P + \cos Q ] \\ 2\cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q & = \cos P + \cos Q \end{align} $ Sehingga tebukti rumus $ \cos P + \cos Q = 2 \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q $ $\spadesuit $ Pembuktian Rumus $ \cos P - \cos Q = -2 \sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q $ $ \begin{align} \sin A \sin B & = -\frac{1}{2}[ \cos A+B - \cos A- B ] \\ \sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q & = -\frac{1}{2}[ \cos P - \cos Q ] \\ -2\sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q & = \cos P - \cos Q \end{align} $ Sehingga tebukti rumus $ \cos P - \cos Q = -2 \sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q $ $\spadesuit $ Pembuktian Rumus $ \tan P + \tan Q = \frac{2\sinP+Q}{\cos P+Q + \cos P-Q } $ *. Gunakan rumus $ \sin P+Q = \sin P\cos Q + \cos P \sin Q \, $ dan $ 2 \cos P \cos Q = \cos P+Q + \cos P-Q $ $ \begin{align} \tan P + \tan Q & = \frac{\sin P}{\cos P} + \frac{\sin Q}{\cos Q} \\ & = \frac{\sin P\cos Q}{\cos P \cos Q} + \frac{\cos P \sin Q }{\cos P \cos Q} \\ & = \frac{\sin P\cos Q + \cos P \sin Q }{\cos P \cos Q} \\ & = \frac{\sin P+Q }{\cos P \cos Q} \\ & = \frac{2\sin P+Q }{2\cos P \cos Q} \\ & = \frac{2\sin P+Q }{\cos P+Q + \cos P-Q} \end{align} $ Sehingga tebukti rumus $ \tan P + \tan Q = \frac{2\sinP+Q}{\cos P+Q + \cos P-Q } $ $\spadesuit $ Pembuktian Rumus $ \tan P - \tan Q = \frac{2\sinP-Q}{\cos P+Q + \cos P-Q } $ *. Gunakan rumus $ \sin P-Q = \sin P\cos Q - \cos P \sin Q \, $ dan $ 2 \cos P \cos Q = \cos P+Q + \cos P-Q $ $ \begin{align} \tan P - \tan Q & = \frac{\sin P}{\cos P} - \frac{\sin Q}{\cos Q} \\ & = \frac{\sin P\cos Q}{\cos P \cos Q} - \frac{\cos P \sin Q }{\cos P \cos Q} \\ & = \frac{\sin P\cos Q - \cos P \sin Q }{\cos P \cos Q} \\ & = \frac{\sin P-Q }{\cos P \cos Q} \\ & = \frac{2\sin P-Q }{2\cos P \cos Q} \\ & = \frac{2\sin P-Q }{\cos P+Q + \cos P-Q} \end{align} $ Sehingga tebukti rumus $ \tan P + \tan Q = \frac{2\sinP-Q}{\cos P+Q + \cos P-Q } $ Contoh 2. Tentukan nilai dari a. $ \sin 105^\circ + \sin 15 ^\circ $ b. $ \sin 105^\circ - \sin 15 ^\circ $ c. $ \cos 105^\circ + \cos 15 ^\circ $ d. $ \tan 105^\circ + \tan 15 ^\circ $ Penyelesaian a. Nilai $ \sin 105^\circ + \sin 15 ^\circ $ $\begin{align} \sin P + \sin Q & = 2 \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q \\ \sin 105^\circ + \sin 15 ^\circ & = 2 \sin \frac{1}{2}105^\circ+ 15 ^\circ \cos \frac{1}{2}105^\circ-15 ^\circ \\ & = 2 \sin 60 ^\circ \cos 45 ^\circ \\ & = 2 .\frac{1}{2}\sqrt{3} . \frac{1}{2}\sqrt{2} \\ & = \frac{1}{2}\sqrt{6} \end{align} $ Jadi, nilai $ \sin 105^\circ + \sin 15 ^\circ = \frac{1}{2}\sqrt{6} $ b. Nilai $ \sin 105^\circ - \sin 15 ^\circ $ $\begin{align} \sin P - \sin Q & = 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P-Q \\ \sin 105^\circ - \sin 15 ^\circ & = 2 \cos \frac{1}{2}105^\circ+ 15 ^\circ \sin \frac{1}{2}105^\circ-15 ^\circ \\ & = 2 \cos 60 ^\circ \sin 45 ^\circ \\ & = 2 .\frac{1}{2} . \frac{1}{2}\sqrt{2} \\ & = \frac{1}{2}\sqrt{2} \end{align} $ Jadi, nilai $ \sin 105^\circ - \sin 15 ^\circ = \frac{1}{2}\sqrt{2} $ c. Nilai $ \cos 105^\circ + \cos 15 ^\circ $ $\begin{align} \cos P + \cos Q & = 2 \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q \\ \cos 105^\circ + \cos 15 ^\circ & = 2 \cos \frac{1}{2}105^\circ+ 15 ^\circ \cos \frac{1}{2}105^\circ-15 ^\circ \\ & = 2 \cos 60 ^\circ \cos 45 ^\circ \\ & = 2 .\frac{1}{2} . \frac{1}{2}\sqrt{2} \\ & = \frac{1}{2}\sqrt{2} \end{align} $ Jadi, nilai $ \cos 105^\circ + \cos 15 ^\circ = \frac{1}{2}\sqrt{2} $ d. Nilai $ \tan 105^\circ + \tan 15 ^\circ $ $\begin{align} \tan P + \tan Q & = \frac{2\sinP+Q}{\cos P+Q + \cos P-Q } \\ \tan 105^\circ + \tan 15 ^\circ & = \frac{2\sin105^\circ +15 ^\circ }{\cos 105^\circ + 15 ^\circ + \cos 105^\circ - 15 ^\circ } \\ & = \frac{2\sin120^\circ }{\cos 120 ^\circ + \cos 90 ^\circ } \\ & = \frac{2\sin180^\circ - 60^\circ }{\cos 180^\circ - 60^\circ + \cos 90 ^\circ } \\ & = \frac{2\sin 60^\circ }{ - \cos 60^\circ + \cos 90 ^\circ } \\ & = \frac{2 . \frac{1}{2} \sqrt{3} }{ - \frac{1}{2} + 0 } \\ & = \frac{\sqrt{3} }{ - \frac{1}{2} } \\ & = -2\sqrt{3} \end{align} $ Jadi, nilai $ \tan 105^\circ + \tan 15 ^\circ = -2\sqrt{3} $ 3. Tentukan nilai dari a. $ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ $ b. $ \sin 84^\circ \tan 42 ^\circ + \cos 84^\circ $ Penyelesaian a. Misalkan nilai $ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = x $ artinya kita mencari nilai $ x \, $ . *. Gunakan sudut rangkap sinus $ \sin 2A = 2\sin A \cos A $ Kedua ruas dikalikan $ 2\sin 20^\circ \, $ dan rumus $ 2\sin A \cos A = \sin 2A $ $ \begin{align} x & = \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = 2\sin 20^\circ . \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = 2\sin 20^\circ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \sin 2 \times 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \sin 40^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \frac{1}{2}2 \sin 40^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \frac{1}{2} \sin 2 \times 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \frac{1}{2} \sin 80^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \frac{1}{2}. \frac{1}{2} 2\sin 80^\circ \cos 80^\circ \cos 60^\circ \\ 2\sin 20^\circ. x & = \frac{1}{4} \sin 2 \times 80^\circ \cos 60^\circ \\ 2\sin 20^\circ. x & = \frac{1}{4} \sin 160^\circ \cos 60^\circ \\ 2\sin 20^\circ. x & = \frac{1}{4} \sin 180^\circ - 20^\circ \cos 60^\circ \\ 2\sin 20^\circ. x & = \frac{1}{4} \sin 20^\circ . \frac{1}{2} \\ 2\sin 20^\circ. x & = \frac{1}{8} \sin 20^\circ \\ x & = \frac{ \frac{1}{8} \sin 20^\circ }{ 2\sin 20^\circ} \\ x & = \frac{1}{16} \end{align} $ Jadi, nilai $ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = \frac{1}{16} $ b. Nilai $ \sin 84^\circ \tan 42 ^\circ + \cos 84^\circ $ *. Gunakan $ \sin 2 A = 2\sin A \cos A \, $ dan $ \tan A = \frac{\sin A}{\cos A } $ serta $ \cos 2A = 1 - 2\sin ^2 A $ *. Menenylesaikan soal $ \begin{align} \sin 84^\circ \tan 42 ^\circ + \cos 84^\circ & = \sin 2 \times 42^\circ \tan 42 ^\circ + \cos 2 \times 42^\circ \\ & = 2\sin 42^\circ \cos 42^\circ . \frac{\sin 42 ^\circ}{\cos 42 ^\circ} + 1 - 2\sin ^2 42^\circ \\ & = 2\sin ^2 42^\circ + 1 - 2\sin ^2 42^\circ \\ & = 1 \end{align} $ Jadi, nilai $ \sin 84^\circ \tan 42 ^\circ + \cos 84^\circ = 1 $ . 4. Tentukan jumlah $ n \, $ suku pertama dari deret $ \sin a + \sin a + b + \sin a+2b + \sin a + 3b + ... + \sin a + n-1b $ Pnyelesaian *. Soal ini adalah jumlah deret dengan suku-suku berbentuk trigonometri. *. Jumlah $ n \, $ suku pertama $ s_n$ maksudnya $ s_n = \sin a + \sin a + b + \sin a+2b + \sin a + 3b + ... + \sin a + n-1b $ *. Kita gunakan rumus $ \sin A \sin B = -\frac{\cos A+B - \cos A - B} \, $ atau $ 2\sin A \sin B = \cos A- B - \cos A + B $ *. Semua suku kita kalilikan dengan $ 2 \sin \frac{b}{2} \, $ , kemudian dijumlahkan semua. $ \begin{array}{cccccc} 2\sin a \sin \frac{b}{2} & = & \cos a - \frac{b}{2} & - & \cos a + \frac{b}{2} & \\ 2\sin a + b \sin \frac{b}{2} & = & \cos a + \frac{b}{2} & - & \cos a + \frac{3b}{2} & \\ 2\sin a + 2b \sin \frac{b}{2} & = & \cos a + \frac{3b}{2} & - & \cos a + \frac{5b}{2} & \\ \vdots & & \vdots & & \vdots & \\ 2\sin a + n-1b \sin \frac{b}{2} & = & \cos a + n - \frac{3}{2}b & - & \cos a + n - \frac{1}{2}b & + \\ \hline \\ 2 \sin \frac{b}{2} s_n & = & \cos a - \frac{b}{2} & - & \cos a + n - \frac{1}{2}b & \end{array} $ *. Gunakan rumus $ \cos A - \cos B = -2 \sin \frac{1}{2}A + B \sin \frac{1}{2}A-B $ $ \begin{align} 2 \sin \frac{b}{2} s_n & = \cos a - \frac{b}{2} - \cos a + n - \frac{1}{2}b \\ & = -2 \sin \frac{1}{2} \left a - \frac{b}{2} + a + n - \frac{1}{2}b \right \sin \frac{1}{2} \left a - \frac{b}{2} - a + n - \frac{1}{2}b \right \\ 2 \sin \frac{b}{2} s_n & = 2 \sin \left a + \frac{n-1}{2} b \right \sin \left \frac{n}{2} b \right \\ \sin \frac{b}{2} s_n & = \sin \left a + \frac{n-1}{2} b \right \sin \left \frac{n}{2} b \right \\ s_n & = \frac{ \sin \left a + \frac{n-1}{2} b \right \sin \left \frac{n}{2} b \right }{\sin \frac{b}{2}} \end{align} $ Jadi, jumlah $ n \, $ suku pertamanya adalah $ \begin{align} s _ n = \frac{ \sin \left a + \frac{n-1}{2} b \right \sin \left \frac{n}{2} b \right }{\sin \frac{b}{2}} \end{align} $
EditorRigel Raimarda. Pada dasarnya matriks juga dapat dioperasikan seperti halnya operasi aljabar biasa. Tetapi terdapat beberapa aturan dalam operasi matriks yang harus diperhatikan. Pada pembahasan ini kita akan mempelajari operasi pada matriks, yang terdiri dari operasi penjumlahan, pengurangan, dan perkalian.
- Operasi aljabar pada suatu fungsi terdiri dari penjumlahan , pengurangan, perkalian dan pembagian. Bagaimanakah cara penulisan serta bagaimanakah pengerjaannya? Mari simak pembahasan mengenai operasi hitung aljabar pada suatu fungsi di bawah dari Cliffts Study Solver Algebra II 2004 oleh Mary Jane Sterling, fungsi dapat ditambah, dikurangi, dikalikan, dan dibagi, di mana hasilnya merupakan fungsi lain yang biasanya dasarnya operasi aljabar pada suatu fungsi dapat diselesaikan seperti halnya operasi aljabar biasa. Secara matematis, jika f merupakan suatu fungsi dengan daerah asal Df, dan g merupakan suatu fungsi dengan daerah asal Dg. Maka operasi aljabar pada fungsi tersebut dapat dinyatakan seperti di bawah Baca juga Matematika Aljabar, Konsep Arsitektur Masjid Raya Jawa Barat Penjumlahanf + g didefinisikan sebagai f+gx = Fx + gxdengan daerah asal Df+g = Df ∩ Dg Penguranganf - g didefinisikan sebagai f-gx = Fx - gxdengan daerah asal Df-g = Df ∩ Dg Perkalianf x g didefinisikan sebagai fxgx = Fx x gxdengan daerah asal Dfxg = Df ∩ Dg Pembagianf g didefinisikan sebagai f/gx = Fx / gxdengan daerah asal Df/g = Df ∩ Dg - {xgx=0}
BLevLr4.
  • 0v1u30te36.pages.dev/190
  • 0v1u30te36.pages.dev/181
  • 0v1u30te36.pages.dev/218
  • 0v1u30te36.pages.dev/239
  • 0v1u30te36.pages.dev/283
  • 0v1u30te36.pages.dev/76
  • 0v1u30te36.pages.dev/383
  • 0v1u30te36.pages.dev/259
  • 0v1u30te36.pages.dev/294
  • aturan perkalian pembagian penjumlahan dan pengurangan